
Simultaneous Evolution of Neuro-Controllers for
Multiple Car-like Robots

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes,
A. Montserrat Alvarado-González

Universidad Autónoma Metropolitana, Department of Applied Mathematics and
Systems, Mexico City, Mexico

tonio.jaimes@gmail.com, jcervantes@correo.cua.uam.mx,

mgomez@correo.cua.uam.mx, amontserrat@gmail.com

Abstract. In this paper, we presented a methodology that allows the
simultaneous evolution of neuro-controllers for multiple car-like robots.
The methodology consists of three modules: the Evolutionary Algorithm
module based on the Rank Genetic Algorithm to optimize the weights of
the robots’ neuro-controllers, the Robots Controllers Module based on a
Feedforward Neural Network, and the Robots Module, where the TORCS
car-like robots simulator was used for the experiments. Since TORCS’
characteristics are realistic enough, the obtained results could provide
insights applicable to real autonomous cars. We set up a challenging
driving scenario in order to test the RankGA capabilities to find solutions
within similar conditions as those found in real life. This algorithm should
be able to maintain the current best individual and, at the same time,
being able to escape local optima. The methodology successfully creates
neuro-controllers able to keep the car in the track, to slow down to take
curves, and to adjust the speed and certain gears to finish the race. How-
ever, we found that using evolution alone it is not enough to efficiently
deal with situations presented in real-life driving (e.g., changing gears
as needed, taking curves at high speed or avoiding collisions with other
cars). Finally, we present some directives on possible future developments
that could enlighten us on how to approach problems like this one.
For instance, we suggest implementing a methodology that allows the
neuro-controller to learn and optimize its parameters in real time.

Keywords: neural controller, rankGA multiple car-like robots.

1 Introduction

Autonomous navigation of car-like robots that travel through a given envi-
ronment while avoiding fixed and mobile obstacles (such as each other) has
been of great interest among researchers. Ideally, it would include both the
creation of a plan of action based on the knowledge about the environment and a
reactive system that allows a fast response to the changes in the environment [6].
Basically, the reactive system avoids collisions with obstacles by recognizing the
environment based on the information obtained by the robot’s sensors and reacts

29

ISSN 1870-4069

Research in Computing Science 147(10), 2018pp. 29–44; rec. 2018-07-10; acc. 2018-08-28



by modifying the robot’s actuators (i.e. the robot controller). The reactive system
can be built based on two different approaches: the classical and the cognitive
approach. In the former approach, the robot controllers are manually generated
based on human knowledge of the specific problem conditions. In the latter,
the robots extract information from the data in order to automatically design
the controller [10]. Designing a specific solution, as in classical robotics, has the
disadvantage of having to think about all the factors that must be considered,
and if one of them is missing, the solution would not be as efficient as it could. In
contrast, in the cognitive approach, the provided solutions take into account all
the information sensed by the robots. Neural Networks (NN) are widely employed
in the cognitive approach to make robots navigate in different scenarios. It is
expected that an NN learns by adjusting its parameters (weights) based on the
acquired knowledge.

Although there are deterministic techniques (e.g., those based on gradient
information) to obtain the weight values, the problem of autonomous navigation
usually poses a scenario with several local optima which makes it very hard to
solve by techniques based on local information. As a consequence, in the field of
Evolutionary Robotics (ER) the use of Evolutionary Computation methods has
been proposed [12] (e.g., Genetic Algorithms or Evolutionary Strategies) [8, 9]
for obtaining a better approximation of the values of the weights that lead to
a global optimal robot controller. Controllers designed this way are known as
neuro-controllers. As far as we know, most of the proposals in Evolutionary
Robotics are for a single car-like robot, i.e. [2,3,9,13]. A review of studies which
combine Neural Networks with Evolutionary Computation techniques in the ER
area can be consulted in [5, 8, 12].

Controllers have been made for multiple robots with other paradigms, for
example, in [1] they build a neuro-fuzzy controller for collaborative tasks, in [11]
they build a neuro-fuzzy controller used for multiple robots that must avoid
crashing each other. The training method is backpropagation with hand-made
training data.

Simultaneous evolution means that the individuals in the population are
evaluated in an environment where all of them can interact with each other. This
has the advantage that individuals evolve to consider this complexity. Another
advantage is that one simulation can be used to evaluate many individuals at
once saving computing effort. Thus, in this work, we propose the simultaneous
evolution of neuro-controllers based on an adapted version of a Rank Genetic
Algorithm (RankGA) [4] to tune the Feedforward Neural Network (FFNN)
weights to control multiple simulated car-like robots that compete between them.

The remainder of this paper is organized as follows. In Section 2, we present
research related to the evolution of neuro-controllers of multiple car-like robots.
Then, in Section 3, we explain the details of the proposed methodology. In
Section 4, we present the experimental setup. In Section 5, we present key results
and discussion about the experiments designed to evaluate the neuro-controllers’
behavior. Finally, in Section 6, we provide some conclusions and possible future
research paths.

30

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



2 Related Work

In what follows, we review the works related to neuro-controllers combining
Neural Networks with Evolutionary Computation techniques to drive a single
robot.

In [9], Hui and Pratihar address the problem of a car-like robot that has to
find a collision-free and time-optimal path into an environment which has a few
moving obstacles. They compare three approaches, In the first approach, they
use a Feedforward NN trained with Back-propagation to build the NN-based
controller. In the second approach, they use a Genetic Algorithm (GA) to evolve
an NN-based controller, and the third one is a motion planner (Potential Field
Method), which has the task of determining the acceleration and the steering
angle of the robot in order to reach the target and avoid collisions. The aim is
to find the controller that makes the robot able to reach the target in the lowest
possible traveling time and avoiding collisions with fixed obstacles. They found
that the second approach outperforms the others. Note that the problem they
deal with has various simplifications. For instance, the robot entries are only
two: the robot’s wheels are considered to move due to pure rolling action, and
the back hitting of the robot by the obstacles is neglected.

In [13], Togelius and Lucas use a genetic algorithm to train the neuro-
controller of a car-like robot in a 2D simulation environment. They made neuro-
controllers for different car racing tracks and reported that general proficient
controllers can be obtained if neuro-controllers are evolved from scratch for one
track and then, when it reaches certain proficiency, additional tracks are added
to the tracks set. They did experiments with 6 tracks and obtained good results
when training first with the easier tracks and then with the harder ones. The
obtained controllers do not perform well in unknown tracks.

In [2], Capi and Toda also use a FFNN trained with a GA to control a
real robot that has to move through a very simple path in an office. They
make a preprocessing of the image captured by the robot’s camera, with this
preprocessing, the number of entries in the NN is reduced and so, learning is
faster. However, the amount of information that enters in the NN is less, but in
this case, the problem is simple, then the obtained information was enough to
solve it.

In [3], Cervantes and Flores propose a GA was used to evolve a fixed topology
of a FFNN for controlling a real robot which has to follow a simple path to reach
its target. They propose GA operators suitable for noisy fitness functions. As
in [2], the problem to solve is very simple.

3 Evolutionary Algorithms and Neural Networks - Base
Scheme for Controlling Multiple Mobile Robots

In this work, we propose the simultaneous evolution of neuro-controllers based
on an adapted version of a Rank Genetic Algorithm (RankGA) [4] to tone

31

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



the Feedforward Neural Network weights to control multiple simulated car-like
robots that compete between them.

As previously mentioned, the goal of the methodology we present is to find
the most adequate neuro-controllers to control multiple simulated car-like robots
that compete between them, while avoiding collisions and reach their goal posi-
tion in the shortest possible time.

The methodology consists of three modules: the Evolutionary Algorithm (i.e.,
the RankGA) module, the Robots Controllers Module (i.e., the Feedforward Neu-
ral Network), and the Robots Module. Figure 1 illustrates the flow of information
that interconnects them.

Fig. 1. Methodology: The Evolutionary Algorithm Module evolves a population of
weights vectors that are sent to the Robot Controllers Module for evaluation (1) and
orders the Robots Module to start. The Robots Module sends, every few milliseconds,
the robots’ sensors values to the Robots Controllers Module (2) which, in turn, sends
the robot’s actuators values back (3). Finally, when the end criterion is met, the Robots
Module sends to the Evolutionary Algorithm Module the performance results of each
robot in order to evaluate the population (4).

In the Evolutionary Algorithm Module (EAM) the RankGA algorithm ap-
plies mutation, crossover, and selection operations to a set P (the population) of
individuals pi, where i = 1, . . . , NI , and NI is the number of individuals. Each
individual pi is a vector of real values pi,j , where j = 1, . . . , NG, and NG is the
number of genes in the individual. The EAM sends the population P to the
Robot Controller Module (RCM) and orders the Robots Module (RM) to start
sensing and to acquire data.

The RCM uses the values pi,j of each individual pi as the parameters of one of
the robot controllers Ri in the Robots Module. Specifically, it uses these values
as the weights of the synaptic connections of the neurons in the Feedforward
Neural Network.

32

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



The objective of the EAM is to find the optimal set of weight values to
achieve the best performance of a group of car-like robots. For each robot’s step
t, the RM sends the robots sensor’s status to the RCM. After this, based on its
current weights, the RCM sends the updated values to the actuators namely:
acceleration, brake, clutch, steering angle, and gear. Once the termination crite-
ria are met (e.g., the race is finished or the time is reached), the results of every
robot are sent from the RM to the EAM. The above process is repeated for each
generation.

In what follows we will explain all modules in further detail.

3.1 The Robots Module: TORCS

The Robots Module of the proposed methodology is designed in such a way
that can be applied to various scenarios, namely, using either real or simulated
car-like robots. For our study, we adopted a simulated environment for carrying
out the experiments.

The Open Racing Car Simulator (TORCS) [14] is an open source simulator
for car racing in 3D for multiple players. Figure 2 shows the simulation environ-
ment set for the experiments. Each car has up to 79 sensors including speed, the
position of the car on a track, the angle between the car and the track axis, and
19 track sensors, to name a few. At each game tick, each car controller receives
its sensory information from the TORCS server and sends back, as an answer,
the computed values of five actuators: steering wheel, accelerator, brake, gear,
and clutch. The description of these values is presented in Table 1.

Subsequently, the TORCS server simulates the next simulation step. This
process is repeated until the race is completed. In this simulation environment
the controller must be fast enough to respond to the server within the current
game tick since if the server does not get an answer in time, it repeats the last
seen actuators values. The most important sensors obtain information about the
possible obstacles within a radius of 200 meters. There two kinds of obstacles in
a race, namely: track edges and other cars. For detecting track edges, the sensors
sample the space in front of the car for every 10◦ angle, spanning clockwise from
−π/2 up to +π/2 with respect to the car axis (see Fig. 3. Similar to track sensors,
for detecting other cars, the controller receives information from 36 sensors that
detect cars within the same distance. The only difference is the covered range
that goes from −π to π. These collision sensors and others are briefly described
in Table 3.

It is worth to mention that TORCS is implemented as a client/server archi-
tecture. The server is the process that carries out the simulation and obtains the
current values of the sensors of each car in the race. On the other hand, each
robot plays the role of the client, so that it only receives the values of its own
sensor values and sends to the server the actuator values computed somehow.

33

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



Fig. 2. TORCS: The simulation environment.

Fig. 3. Vectors for detecting track edges within a radius of 200 meters.

Table 1. Actuators adopted as outputs for the neural network.

Actuator Description Range

Steering
Wheel

Angle of the steering wheel. -1 and 1 represent 20◦ to the right
and to the left, respectively.

[−1, 1]

Accelerator The gas pedal. A value of 0 means no gas, while 1 full gas. [0, 1]

Brake The break pedal. A value of 0 means no brake, while 1 full brake. [0, 1]

Gear The selected gear. -1 means reverse, 0 neutral, while remainder
values engage the other gears.

[−1, 6]

Clutch The pedal clutch. A value of 0 means do not press the clutch,
while 1 full clutch.

[0, 1]

34

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



Table 2. Sensors adopted as entries for the neural network.

Sensor Description Range

Angle Angle between car direction and the tangent line of current
segment of the track.

[−π, π]

TrackPos Position between the car and the track axis. 0 means that
the car is in the center, -1 means the car is the right edge,
+1 means the car is in the left edge, and values beyond -1
and 1 means the car is outside the track.

[-1,1]

Track Values of 19 sensors which measure the distance between the
edge track and the car in a range of 200 meters.

[−π/2, π/2]

Gear Current gear of the car. [-1,. . . ,6]

SpeedX Current speed along axis of abscissas. [0,1]

SpeedY Current speed along axis of ordinates. [0,1]

Opponents Values of 36 radial sensors at intervals of 10◦ which measure
the distance to the closest opponent in a range of 200 meters.

[0,200]

3.2 The Evolutionary Algorithm Module

We use an adapted version of the RankGA [4] to find the optimal configuration
of the robot’s neuro-controller. The reason to use this algorithm is that it has
been proven [4] to outperform a simple GA in difficult fitness landscapes where it
is necessary to have a good balance between exploration and exploitation. This
balance is needed when the fitness landscape presents many local optima and
where a modular solution can be constructed by evolution. Also, each module’s
solution is hard to find in such difficult problems. The problem in this study
is very hard and complex, so we expect it to have many local optima. It is
also expected to have some sort of modular structure because of the various
tasks that need to be performed simultaneously such as stay in the track and
avoid collisions with objects while being fast. Thus, the Rank GA seems to be a
plausible algorithm for the problem.

Here we use an adapted version of the algorithm in [4] to floating point
genes. In this algorithm, each individual’s genotype is a set of all the Neural
Network weights as floating point numbers. Individuals are initialized randomly.
The individuals of the population are ranked from best to worst in terms of their
fitness before each of the genetic operators are applied.

In this study, the main goal is the time to finish the race. However, when the
time limit runs out or the car gets stuck, the simulator returns zero for the race
time. Therefore, several solutions might have zero time, although some of the
cars get closer to the finish line than others. Thus, in order to rank solutions,
we used a lexicographic order where the first criterion is the distance to finish
the race and the second one is the lap time.

Then, the application of these genetic operators depends on the rank of each
individual in the population. The top-ranked individuals tend to stay unchanged
while others tend to vary increasingly with their rank trying to escape from local
optima.

35

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



Algorithm 1 RankGA.

1: procedure Main
2: initialization
3: Evaluation and Sort
4: while not end Criteria met do
5: RankSelection
6: RankRecombination
7: Evaluation and Sort
8: RankMutation
9: Evaluation and Sort

10: procedure Rank Selection
11: clones← null
12: for i in [0, . . . , NI − 1] do
13: ri ← i/NI

14: NC ← bK(1− ri)(K−1)c . Note the bxc
15: for j in [0, . . . , NC − 1] do
16: clones.add(pi) . pi is cloned NC times

17: i← 0
18: while clones.size() < NI do
19: ri ← i/NI

20: NC ← K(1− ri)(K−1) . without bxc
21: f ← NC − bNCc . f is the fractional part of NC

22: if random(0, 1) < f then
23: clones.add(pi) . extra clone of pi

24: i← (i+ 1) mod NI

25: p← clones . replace population
26: Sort

27: procedure Rank Recombination
28: for i in [0, . . . , NI − 2] step 2 do . for each even individual
29: for g in [0, . . . , NG − 1] do . for each gene
30: if random(0, 1) < 0.5 then . uniform crossover
31: Swap(pi,g, pi+1,g) . mating pi with pi+1

32: procedure Rank Mutation
33: c← ln(NG)/ln(NI)
34: for i in [0, . . . , NI − 1] do
35: ri ← (i/NI)c

36: for g in [0, . . . , NG − 1] do
37: pi,g ← (1− ri)pi,g + (ri)gaussian(0, R)

36

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



The Rank of an Individual The individuals in the population are sorted from
best to worst. Then, for the i-th individual, where i = 0, . . . , NI − 1, its rank is
given by

ri = i/NI . (1)

Rank Selection Individuals are given a number of instances (clones) for the
next generation. The number of clones NC for an individual i with rank ri is
given by

NC(ri) = K(1− ri)K−1, (2)

where K is the population’s selective pressure. This NC value is separated in
its integer and fractional parts. The integer part determines directly a minimum
number of clones of an individual. The fractional part determines the probability
to produce an extra clone of that individual. Random numbers between 0 and 1
are drawn for each current population individual to check if an extra clone will
be created cyclically until the total number of clones equals NI in the original
population.

Rank Recombination Mating is made between contiguous individuals in the
fitness sorted list of individuals, i.e., between similarly ranked individuals.

Rank Mutation Each gene of an individual with rank ri, being a real number
without bounds, is modified as follows

p
(t+1)
i,j = (1− rci ) p

(t)
i,j + rci Gaussian(0, R), (3)

where

c =
ln(NG)

ln(NI)
, (4)

R is the reach (as a standard deviation) of random mutation, and t is the current
generation.

3.3 The Robot Controller Module: Feedforward Neural Network

As mentioned before, we employed an NN as the robot’s controller. For this
study, we used a three-layered fully-connected Feedforward NN with a single
hidden layer, as shown in Figure 4.

In this FFNN we adopted a sigmoid activation function for each neuron.
Besides, the neurons of the input layer are connected to each of the robot sensors
(see Table 2), and the five neurons of the output layer are connected to the robot
actuators (Table 1) to be applied in the next simulation step. In the output layer,
neurons yj , where j = 1, . . . , 5, have the following output:

yj = sigmoid

(
NH∑
i=1

wy
ijhi

)
, (5)

37

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



Fig. 4. Feedforward Neural Network. The input layer has 60 nodes representing the
sensors: speed, the position of the car on a track, the angle between the car and the
track axis, and 19 track sensors, gear, and 36 opponents values (see Table 2 for further
details about the sensors). The hidden layer has 10 nodes. The output layer has five
nodes representing the: steering wheel, accelerator, brake, gear, and clutch (see Table
2 for further detail about the actuators).

where NH is the number of neurons in the hidden layer (including one neuron
that produces constant output 1, wy

ij is the weight of the output hi of the hidden
layer for the j-th neuron in the output layer. Also, the outputs hj in the hidden
layer are given by

hj = sigmoid

(
NS∑
i=1

wh
ijxi

)
, (6)

where NS is the number of input sensors, wh
i,j is the weight of the sensor value

xi for the j-th neuron in the hidden layer.

In TORCS each robot is implemented as a different client that needs to be
connected to the Robots Module, which plays the role of the server. For instance,
if we have four controlled cars, that means that there are four different clients
connected to the Robots Module. Each of these clients only receives the values
of its own sensor values and should send back the computed actuators values.
On the other hand, the specific set of weights for each client are received from
the Evolutionary Algorithm Module.

The values for the accelerator, brake and clutch (i.e., outputs y1, y2 and
y3) are already in proper range [0,1]. However, since the Robots Module expect
values in other ranges for the other two actuators, we adjust the corresponding
outputs in the following way:

38

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



– For the steering wheel angle, y4 = 2× sigmoid(Σ)− 1, to obtain a value in
the range [−1, 1] ∈ R.

– For the gear, y5 = round(7×sigmoid(Σ)−1), to obtain a value in [−1, 6] ∈ Z.

4 Experimental Design

In this section, we report on the design of experiments to test the performance
of the methodology introduced in the previous section.

As our first concern was to discover if the obtained neuro-controllers are
capable of autonomously driving following the track and taking the curves with-
out any collision, we used the A-Speedway race track. This race track is a
free-obstacle oval with a length of 1.9km with no slopes (see Figure 5).

As previously explained, each car has up to 79 sensors, however, given the
flat track, we are using for the experiments we only employ 60 of them since
the information for this type of sensors is irrelevant in this scenario. For in-
stance, in this first experiments, our main concern was to test the ability of
neuro-controllers to follow the track and avoid opponents. In these conditions,
sensors values like current lap time, fuel or car’s elevation over the surface are
not necessary to achieve our goals.

Regarding the actuator values, given that in preliminary experiments we
noticed that it is hard for the RankGA to find an adequate value for the clutch
actuator, we decided to set its value to zero.

On the other hand, we fixed some parameters for both the RankGA and the
NN algorithms of the EAM which can be seen in Table 3. In contrast to the
usual setting employed in benchmark problems, in the experiments we used only
40 generations for each configuration because of the simulation time; a typical
run takes around two hours using a computer with 16 cores. For the RankGA
and the FFNN, we used parameter values based on our experience in a similar
work [7].

Notice that, as previously stated, in this study the objective function to be
optimized by the RankGA is the time to finish the race.

Fig. 5. The A-Speedway oval racetrack with length of 1.9Km.

39

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



Table 3. Parameters used for simulation.

Description Value

Population size NI 80
Number of Generations 40
Crossover Rate 1.0
Reach R of random mutation 50
Population’s selective pressure K 3
No. of hidden neurons NH 10
No. of input neurons(sensors) NS 60
No. of simulations 6400
No. of car-like robots 1,2,4,8,16

5 Results and Discussion

In this section, we report and discuss the design and results of our experiments.
The goal is to test the performance of our methodology: i) when varying the
number of car-like robots in a single race, and ii) avoiding obstacles.

It is worth to note that each car-like robot is a neuro-controller (i.e., an
individual of the population).

In order to simultaneously evolve the neuro-controllers for multiple car-like
robots, we take groups of individuals from the population until all of them are
evaluated. For instance, in a race with four cars, the first four best individuals are
enrolled in a race. This way, while each car is being evaluated, it also plays the
role of an obstacle for the opponents. Subsequently, the following four solutions
are taken from the population, and so on, until the entire generation is evaluated.

The parameters to rank the individual’s performance are the following: i) the
distance remaining to finish the competition, and ii) the time to complete the
race.

The results of the experiments are summarized in Table 4. The table shows
the time and distance remaining to finish the competition and the damage of
the car after completing the race. Although the latter value is not taken into
account by the RankGA to evaluate individuals, it helps to explain the kind of
controller obtained. Finally, the last column indicates the number of individuals
that finished the race.

The damage is related to finishing the race because when the maximum
damage is reached, the cars are removed from the race. On the other hand,
for each simulation, there is a maximum time to finish the race in order to
avoid waiting indefinitely for cars that get stuck. Therefore, even if a car is not
damaged enough, it might not finish the race because the time limit ran out.

Judging by the number of cars finishing the race, it is notable that the
complexity seems to increase as the number of simultaneous cars in a single
simulation increases. In particular, for races with 8 and 16 car-like robots,
the RankGA was not able to evolve a neuro-controller that finishes the race,
while for 8 cars, only one neuro-controller could manage to complete the race,
although with a great damage in the car. This behavior does not mean that

40

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



Table 4. Performance evaluation.

No. of robots Time (seg) Distance to
finish (km)

Damage No. of solutions
finishing the race

1 59.018 0 764 8
2 54.818 0 796 10
4 63.318 0 19 4
8 NA 1.465 5951 0
10 59.164 0 6924 1
16 NA 1.612 6 0

the RankGA is bad for the task. Since the task becomes more complex with
more cars on track, it is expected to have worse results. In order to solve the
more complex task, we need to provide the system with more power by either
putting more intermediate neurons in the controllers or by giving the algorithm
more evaluations or both. Also, the fact that only a few individuals are able
to complete the race is an expected result. The design of the RankGA is such
that it always works with some very bad individuals because there are always
randomly generated individuals who are there to provide exploration while only
a few provide exploitation of the good genes that have been found.

In order to evaluate the obstacle avoidance, we manually selected the best
individual of a race and used it as the unique neuro-controller of eight cars. It
is noticeable that such individual was the one that finished the race without
crashing because it was always the leader (i.e., it never found any car in its
way). As a result, the individual did not learn to avoid obstacles. Thus, when
facing this new scenario, the cars did not move or they crashed between them.
This problem is expected to be solved by evaluating individuals all together in a
single race with the best ones starting the race last. Thus, if they can’t overtake
without crashing, they would not be preferred by selection.

In order to appreciate the behavior of the kind of neuro-controllers obtained
by our methodology, we recorded the values of the four active actuators (remem-
ber that the value of the clutch is fixed to 0), namely, wheel angle, acceleration,
brake, and gear. Figures 6–8 show the values of each of these actuators at each
simulation tic for the experiment in only one race.

From Figure 6 we can observe the moments in which the car turns left in
each of the four curves of the track (i.e., the four peaks in the plot). Notice that
a positive value means to turn left, while a negative value to turn right.

On the other hand, as we can see in Figure 7, the actuator value is positive
all the time, which means the car keeps accelerating.

One interesting thing to note is that the neuro-controller of the car never
brakes during the race, as seen in Figure 8. However, as seen in Figure 9, in
order to decelerate to take the curves, the neuro-controller decides to change
from 3rd gear to 2nd. Then, the car returns to 3rd gear. This fact can be seen
in the figure where the vertical lines denote the start of each curve of the track.
The change to 2nd gear is done about the middle of the curves.

41

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



Fig. 6. Values of the wheel angle
actuator during the race.

Fig. 7. Values of the accelerator
pedal actuator during the race.

Finally, even we have achieved an important progress, there is still room for
improvement. First, the methodology is based purely on evolution, i.e., it does
not learn during the simulations. That is, once the neural networks are trained,
their weights are not modified in real time when used. Thus, the information
obtained by each neuro-controller during the race (i.e., the consequences of their
actions) is not incorporated into the model.

Fig. 8. Values of the brake pedal
actuator during the race.

Fig. 9. Values of the gear selection
actuator during the race.

6 Conclusions and Future Work

In this paper, we presented a methodology that allows the simultaneous evolution
of neuro-controllers for multiple car-like robots. The methodology consists of
three modules: the Evolutionary Algorithm module based on the RankGA, the
Robots Controllers Module based on a Feedforward Neural Network, and the
Robots Module, where the TORCS simulator was used for the experiments.

42

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069



The advantage of simultaneously evolving the resulting neuro-controllers is
that the simulations are faster. Regarding the achieved results, we observed that
the neuro-controllers were able to properly handle the wheels to move forward
and take curves. They also learned to change the gear and the accelerator pedal
to both reduce or increment the speed.

However, further work is needed to produce satisfactory performing neuro-
controllers. For instance, the neuro-controllers developed in our methodology
did not learn to avoid obstacles efficiently. It seems to be very difficult to get
the adequate weights for the Neural Network to learn to drive on the track
as fast as possible while trying to avoid a crash with other cars. We think
that incrementing intermediate neurons in the Neural Network could help. Also,
running the evolutionary algorithm for more generations should produce better
results.

As future work, we suggest implementing a methodology that allows the
neuro-controller to learn and optimize its parameters in real time. Additionally, it
would be interesting to train them for each type of tracks (i.e., to have specialists
in each terrain).

Finally, it would be recommended to include the damage allowed as a con-
straint to improve the performance.

Acknowledgements. The authors would like to thank Rodolfo René Suárez
Molnar for providing us with institutional support and Sergio Hernández for his
feedback.

References

1. Awad, H.A., Koutb, M.A., Al-zorkany, M.A.: Multiple Mobile Robots Navigation
in a Cluttered Environment using Neuro-Fuzzy Controller. In: Abraham, A., Dote,
Y., Furuhashi, T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds.) Soft Computing as
Transdisciplinary Science and Technology. pp. 893–903. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

2. Capi, G., Toda, H.: Evolution of neural controllers for robot navigation in human
environments. Journal of Computer Science 6(8), 837 (2010)

3. Cervantes, J., Flores, D.: Rank based evolution of real parameters on noisy fitness
functions. In: 10th Mexican International Conference on Artificial Intelligence,
MICAI 2011. pp. 72–76. Special Session (2011)

4. Cervantes, J., Stephens, C.R.: Limitations of existing mutation rate heuristics and
how a rank GA overcomes them. IEEE Transactions on Evolutionary Computation
13(2), 369–397 (2009)

5. Chin, K.O., Teo, J.T.W.: Evolution of RF-signal cognition for wheeled mobile
robots using pareto multi-objective optimization. International Journal of Hybrid
Information Technology 2(1), 31–44 (2009)

6. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge
University Press, New York, NY, USA, 2nd edn. (2010)

7. Flores, D., Cervantes, J.: Rank based evolution of real parameters on noisy
fitness functions: Evolving a robot neurocontroller. In: 10th Mexican International
Conference on Artificial Intelligence. pp. 72–76 (2011)

43

Simultaneous Evolution of Neuro-Controllers for Multiple Car-like Robots

Research in Computing Science 147(10), 2018ISSN 1870-4069



8. Gupta, S., Singla, E.: Evolutionary robotics in two decades: A review. Sadhana
40(4), 1169–1184 (Jun 2015)

9. Hui, N.B., Pratihar, D.K.: Neural network-based approaches vs. potential field
approach for solving navigation problems of a car-like robot. Machine Intelligence
and Robotic Control 6(I), 29–60 (2004)

10. Nguyen-Tuong, D., Peters, J.: Model learning for robot control: a survey. Cognitive
Processing 12(4), 319–340 (2011)

11. Pradhan, S.K., Parhi, D.R., Panda, A.K.: Neuro-fuzzy technique for navigation of
multiple mobile robots. Fuzzy Optimization and Decision Making 5(3), 255–288
(Jul 2006)

12. Pratihar, D.K.: Evolutionary robotics-A revew. Sadhana 28(6), 999–1009 (2003)
13. Togelius, J., Lucas, S.M.: Evolving robust and specialized car racing skills. In:

IEEE Congress on Evolutionary Computation, CEC 2006. pp. 1187–1194 (2006)
14. Wymann, B., Dimitrakakisy, C., Sumnery, A., Guionneauz, C.: The Open Racing

Car Simulator (jun 2018), http://torcs.sourceforge.net

44

Antonio López Jaimes, Jorge Cervantes-Ojeda, Maria C. Gómez-Fuentes, et al.

Research in Computing Science 147(10), 2018 ISSN 1870-4069


